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Abstract. A model of relaxation in supercooled and entangled polymer liquids is developed
starting from an integral equation describing relaxation in liquids near thermal equilibrium
and probabilistic modelling of the dynamic heterogeneity presumed to occur in these complex
fluids. The treatment of stress relaxation considers two types of dynamic heterogeneity—
temporal heterogeneity reflecting the intermittency of particle motion in cooled liquids and spatial
heterogeneity or particle clustering governed by Boltzmann’s law. Exact solution of the model
relaxation integral equation by fractional calculus methods leads to a two parameter family of
relaxation functions for which the memory indices(β, φ) provide measures of the influence of
the temporal and spatial heterogeneity on the relaxation process. The exponentβ is related to the
geometrical form of the spatial heterogeneity. Relaxation function classes are identified according to
the asymptotics of theψ(t;β, φ) functions at long and short times and their integrability properties.
The integral equation model for relaxation provides a framework for understanding the existence
of ‘universality’ in condensed matter relaxation under restricted circumstances.

Recently, it has become appreciated that patterns of relaxation found in polymer materials are
observed in a much broader class of substances (glasses, colloids, etc) and this has prompted
speculations about the ‘universality’ of disordered material relaxation [1, 2]. A general model
of condensed matter relaxation has been developed to understand these observed regularities
[3]. We start from a formally exact integral equation describing relaxation in Hamiltonian
dynamical systems (material systems) near thermal equilibrium [4]. Probabilistic reasoning,
utilizing Feller’s ‘fluctuation theory of recurrent events’ [5], specifies the functional form of
the memory kernel appropriate to describing homogeneous materials where the rate process
governing relaxation can be ‘regular’ or ‘intermittent’. The relaxation integral equation
obtained involves fractional order differential operatorsIφt where the ‘critical exponent’φ
characterizes the degree of intermittency in the relaxation process. Exact solution of the
relaxation function leads to the Cole–Cole function [6] that is commonly reported in empirical
descriptions of relaxation in condensed (solid) materials. An extension of the model [3]
to include dynamical heterogeneity arising from equilibrium molecular clustering leads to a
relaxation integral equation involving a more general class of fractional differential operators.
These operators depend on an additional memory parameterβ that [3] argues to be related
to the geometrical form of the clusters (lines, sheets, compact clumps). Relaxation function
‘universality classes’ (‘strong mixing’, ‘weak mixing’, ‘non-ergodic’) are defined in terms of
the asymptotic time decay and integrability properties of these relaxation functions.

In developing our probabilistic model of condensed matter relaxation we invoke minimal
assumptions in order to make the description as general as possible. First, we assume that
our material can be described by equilibrium thermodynamics. The existence of equilibrium
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implies that correlations arising from small perturbations or spontaneous thermal fluctuations
decay with time. Specifically, autocorrelation functions for large scale observable properties
of the material, describing the rate of ‘mixing’ of the dynamical system, vanish at long
times. Transport properties are defined through integrals of these autocorrelation functions
so the integrability of these functions is also a concern in classifying relaxation in condensed
materials. Finally, we invoke the condition of stationarity so that results of our measurements
do not depend on when they are performed.

Formal calculations based on these general conditions lead to a general functional relation
describing autocorrelation functionsψ(t) for long wavelength observable propertiesA of our
condensed material. In particular, if we normalizeA(t) so that its average value is zero, then
the dimensionless autocorrelation function ofA(t),

ψ(t) ≡ 〈A(t)A(0)〉/〈A2(0)〉 (1)

obeys the integral equation [3, 4, 7, 8],

dψ(t)/dt = −
∫ t

0
dτk(|t − τ |)ψ(τ) ψ(0) = 1 (2)

whereψ(t) = 0 for t < 0 for a ‘small’ applied perturbation. The symmetric memory kernel
(k(t, τ ) = k(τ, t)) is associated with the assumption of constant energy and stationarity,
leading to an invariance of equation (2) under time inversion(t → −t) and time translation
(t → t + a). Although equation (2) has sufficient generality for describing condensed matter
relaxation processes, the specification of the memory kernel is difficult from first principles
[3, 7]. This situation is helped somewhat from a phenomenological standpoint by the sensitivity
of ψ(t) to the form of the memory kernelk(t).

The usual method of modellingk(t) involves an approach patterned after the Langevin
model of Brownian motion. A representative particle in the material is subjected to fluctuation
forces exerted by its molecular environment and the time averages of these fluctuating forces is
related tok(t) by a fluctuation-dissipation theorem. Here we follow a different strategy, since
our interest is in studying general classes of relaxation functions appropriate to describing long
wavelength condensed matter relaxation.

Feller introduced a general theory of ‘return to equilibrium’ in dynamical processes
governed by a random evolution [5]. The theory assumes that the relaxation events giving
rise to the relaxation process occur as independent random variables in time. This assumption
is compatible with our ‘mixing’ and ‘stationarity’ conditions for condensed matter relaxation.
A heuristic physical motivation for describing the dynamical evolution of a material composed
of interacting particles as a random walk in phase space is discussed by Uhlenbeck [9]. This
type of model leads to an intuitive picture of ‘mixing’ in many-body systems and to relaxation
event times that occur as independent random variables. The intermittency of these fluctuations
has important implications for the character of the relaxation process and general ‘universality
classes’ of relaxation naturally emerge from this approach.

We can establish a connection betweenψ(t) and ‘renewal theory’ by integrating both
sides of equation (2) from 0 tot to obtain the ‘survival renewal equation’,

ψ(t) = 1−
∫ t

0
dτ R(t, τ )ψ(τ) R(t, τ ) = R(|t − τ |) (3a)

R(t) =
∫ t

0
dτk(τ ). (3b)

Equation (3) first arose in the context of describing the decay in the relative number of charter
members of an insurance group, whereR(t) describes the rate at which members drop out
through death and where new members are added to keep the total number of policy holders
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constant. This type of equation can be translated to many contexts (population dynamics,
replacement of industrial equipment, etc), but here we should think ofψ(t) as the probability
that the initial state of the dynamical system propertyA(0) persists (i.e., ‘survives’) up to
time t .

The main object of modern ‘renewal theory’ is the probabilistic modelling of the ‘renewal
rate’R(t), taken to be the kernel of equation (3a). The continuum limit of Feller’s classical
‘fluctuation theory of recurrent events’ [5] provides an integral equation for the average rate
of ‘renewal events’ governing the relaxation process,

R(t) = p(t) +
∫ t

0
dτ p (|t − τ |)R(τ ). (4)

p(t) is the probability density describing the (first-passage) time between relaxation increment
events. The solution of this equation gives the average rateR(t) of the random process
governing the large scale relaxation process. It is emphasized that the assumption of the
independence of the relaxation events restricts the modelling to large scale relaxation processes
of equilibrium materials.

The occurrence of universality inψ(t) andR(t) in this model of condensed matter
relaxation derives from the observation that the solutionR(t) from equation (4) for large
t depends only on the existence ofp(t) moments,

〈tn〉 =
∫ ∞

0
dτ p(τ)τn. (5)

There are functional limit theorems governing the classes ofR(t) that arise from this
probabilistic model. Three general cases occur, (a)〈t2〉, 〈t〉 <∞, (b)〈t2〉 → ∞, 〈t〉 <∞ and
(c) 〈t2〉, 〈t〉 → ∞, corresponding to different degrees of intensity in the fluctuations governing
the relaxation process.

(a) In the case where〈t2〉 < ∞, the relaxation events occur with a well-defined average
period 〈t〉 < ∞, leading to a relatively rapid mixing (i.e.,ψ(t → ∞) = 0). If we take,
for example, the relaxation process to occur as a Poisson process(p(t) = e−τ/τ0/τ0), then
equation (4) gives a constant rate [3, 5],

R(t) = 1/τ0. (6a)

Inserting this result into equation (3) implies an exponential decay,ψ(t) = e−t/τ0. More
generally,R(t) for anyp(t) with a finite second moment has the asymptotic dependence,

R(t) ∼ 1/τ0 +C1/t t →∞ (6b)

whereC1 depends on〈t〉 and 〈t2〉. There is then a rapid approach to the constant rate in
equation (6a). Exponential decay (‘strong mixing’) is commonly found in idealized models
of condensed matter relaxation.

(b) In the case where〈t2〉 → ∞ and 〈t〉 < ∞, corresponding to a more intermittent
relaxation process, we still have a finite relaxation rate at long times (R(t →∞) ∼ 1/τ0), but
there is a slower approach ofR(t) to its asymptotic limit [3, 5],

R(t) ∼ 1/τ0 +C2t
φ−1 t →∞ 0< φ < 1 (7)

whereC2 depends on the ‘critical index’φ characterizing the strength of the fluctuations in
the relaxation process.

(c) In the case of strongly intermittent relaxation, where even the first moment diverges
〈t〉 → ∞, the relaxation rate approaches zero at long times [3, 5],

R(t) ∼ C3t
φ−1 t →∞ 0< φ < 1 (8)

whereC3 is a known constant [3].



A332 J F Douglas

The exponentφ, the ‘crossover exponent’, has a geometric interpretation as the Hausdorff
(‘fractal’) dimension of the time pointsτ at which the elementary relaxation (recurrent) events
occur. This geometrical interpretation ofφ can be appreciated by defining a counting function
Lt for the ‘local time’ spent by a random walk path at a boundary. In figure 1 we show some
realizations ofLt for random walks in two dimensions intersecting a line from which the paths
initiate (φ generally depends on the spatial dimension, surface dimension and walk dimension).
An average over an ensemble of random walk trajectories (128 paths) leads to the solid line
in figure 1, consistent with the exact exponent valueφ = 1/2. The ‘local time’ variableLt
in figure 1 is a counter for those intermittent ‘renewal events’ having their origin in a random
walk path process. For this model we have the average renewal rate,R(t) = d〈Lt 〉/dt ∼ t−1/2.

Figure 1. The ‘local time’Lt of a random walk intersecting a line. Four representative random
walk trajectories are considered where the initial step is positioned at the origin and successive
returns to an arbitrarily designated line (containing the origin) are counted asLt . The smooth
curve represents an average over 128 path realizations and the〈Lt 〉 scales ast1/2.

The three limiting expressions forR(t) indicated above are approximated by the
expression,

Rφ(t) ≈ �0|t |φ−1/0(φ) 0< φ 6 1 (9)

where�0 is a relaxation ‘coupling constant’ and0(φ) is a normalization factor. Some particular
expressions for�0 are discussed by Douglas and Hubbard [3] for models of relaxation in
polymeric systems in theφ→ 1 limit whereRφ reduces to a constant (�0 = 1/τ0). Note that
the additive constant in equation (6b) is neglected in equation (9).

The integral operator in equation (3) with the kernel defined in equation (9) is aRiemann–
Liouville (RL) fractional order operator [10],

Ix
αf (x) =

∫ x

0
dτ [(x − τ)α−1/0(α)]f (t) (10)

wheref (x) is multiplied by a Heaviside step-functionθ(x). Ixα defines a continuous semi-
group that forms the basis of a simple operational calculus [10]. The mainIx

α properties are
prescribed by the relations [10](α, β > 0),

Ix
αIx

βf (x) = Ixα+βf (x) (11a)
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Ix
αIx

βf (x) = IxβIxαf (x) (11b)

Ix
0f (x) = Ix−αIxαf (x) = f (x) (11c)

x−αIxαxm = [0(m + 1)/0(m + 1 +α)]xm. (11d)

The first identity defines exponent additivity, the second commutativity, the third defines the
identity operator and the left-inverse operation, while the fourth defines a useful eigenvalue
relation. Note that the kernel|x−x ′|α−1/0(α) becomes a delta-functionδ(x−x ′) in the limit
α→ 0+, leading to the identity operator in equation (11c). Formal manipulations for negative
α must be made with care, and the results often have meaning only in a distributional sense.

Insertion of equation (9) into equation (3) and utilizing the definition of the
Riemann–LiouvilleoperatorIφt yields a ‘fractional differential equation’ forψ(t),

ψ(t) = 1−�0I
φ
t ψ(t) (12)

that can be formally rearranged and expanded for small�0 as

ψ(t) = 1/[1 +�0I
φ
t ] =

∞∑
k=0

[−�0I
φ
t ]k. (13)

SinceIXkφ = xkφ/0(1 + kφ), we obtain (0< φ 6 1),

ψ(t) =
∞∑
k=0

[−z�]k/0(1 + kφ) z� = �0t
φ (14)

and this expansion can be identified [3] as aMittag–LefflerfunctionEφ ,

ψ(t) = Eφ(−z�) z� = (t/τ0)
φ τ0 = (�0)

−1/φ. (15)

Eφ(−1s) is plotted for a range ofφ values in figure 2(a).
The Mittag–Leffler function is a natural generalization of the exponential relaxation

function observed in ‘strongly mixing’ dynamical systems at equilibrium. Cole and Cole
[6] introduced this function to phenomenologically describe dielectric relaxation in a broad
range of condensed materials. This function is commonly discussed in the frequency domain
where it is known as the ‘Cole–Cole function’.

Yonezawa and coworkers [11] have recently performed some interesting simulation studies
that give insight into the physical significance of the intermittency indexφ. Constraining
the relaxation process to occur on a fractal space or the particle motion to occur as a
continuous time random walk with a long pausing distribution leads to variations inφ in
the resulting Mittag–Leffler (Cole–Cole) relaxation functions [11]. This finding is natural
since the probability of recurrence of particle motion to a previously visited point is altered
in these models, thereby changingφ (see figure 1). The problem of the return probability
of a lattice random walk to the original point att = 0 is exactly described by the renewal
equations above [12]. In this contextψ(t) describes the probability that a random walk does
not return to the origin (‘survives’) up to timet (see equations (A.3) and (A.4) of [12]) where
the rate of return to the origin of the random walkR(t) obeys an integral equation of the form
of equation (3) (see equation (8.25b) of [12]).

A realistic model of condensed matter relaxation in cooled liquids must address the changes
in phase space structure of the dynamical system describing the material that accompanies
temperature changes. It has been suggested that diffusion in an ultrametric space should
mimic this kind of complex phase space evolution [13], and temperature can be incorporated
into this model by making the hopping process thermally activated. This model allows exact
calculation of the random walk recurrence properties. Notably this model exhibits a variable
intermittency index and an ergodic to non-ergodic transition at a well defined characteristic



A334 J F Douglas

(a)

Figure 2. Relaxation functionψ(t;φ, β) for a range ofφ andβ values. The indicesφ andβ model
heterogeneity in time and space, respectively. (a) Stretched exponential (φ = 1); (b) Mittag–Leffler
(β = 0); (c) generalized relaxation function of Douglas and Hubbard [3] (φ = 0.6, 0.7, 0.8, 0.9,
1.0;β = 0.5). The time constantτ ∗ in equation (29) is taken to equal 1.

temperature where fluctuations in the random walk recurrences become strongly heterogeneous
in time [3, 13]. Odagaki has argued that the glass transition corresponds to such an intermittency
transition [14] (see also [3]).

It should be appreciated from this discussion that the general limit theorem leading to the
ψ(t;φ) relaxation functions occurs for a multitude of microscopic models that are ‘attracted’ to
the same ‘universality class’ of relaxation functions. The mathematical origin of this regularity
is the same as in equilibrium critical phenomena, except we do not have a mechanism to
select out particular values of the ‘critical index’φ. Instead, we can expectφ to reflect the
geometry of the material’s phase space. This structure depends on system parameters such as
temperature. The occurrence of fractal phase space geometry (due perhaps to the ‘fracture’ of
islands of stability into sticky Cantori structures as in model dynamical systems [15]) should
be sufficient to give rise to this pattern of relaxation. Probably, the best we can hope to achieve
in understanding this type of phenomenon (i.e.,φ variation) is the construction of exactly
solvable models where this phase space geometry change can be calculated numerically and
the relaxation processes accompanying these changes can be monitored.

There are some particular properties of this Mittag–Leffler function worth emphasizing in
connection with relaxation processes in condensed materials. First, we observe thatEφ(−z�)
is an absolutely monotone function for 0< φ 6 1 andz� > 0 so thatψ(t) decays uniformly.
This is a characteristic feature oflarge scalerelaxation in condensed materials. We also
observe that by changing temperature (and thus the magnitude of the coupling constant�0
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(b)

Figure 2. (Continued)

in equation (9)) the functional form of the relaxation function isinvariant (providedφ does
not change in this temperature interval). This ‘time–temperature superposition’ property is a
mathematical consequence of the homogeneous form of the memory kernel,

k(t;φ) = dR(t)/dt ∼ �0|t |φ−2/0(φ − 1) 0< φ 6 1 (16a)

k(λt;φ) = λφ−2k(t;φ). (16b)

This analytic symmetry reflects the existence of the probabilistic limit theorems discussed
above, again as in critical phenomena.

The probabilistic model of condensed matter relaxation naturally leads to a classification
scheme forψ(t) functions depending on the character of the fluctuations governing the
relaxation process. The simplest case corresponds to the ‘strong mixing’ case whereR(t)
rapidly approaches a constant value so thatψ(t) obeys the limits

lim
t→0+

ψ(t) = 1 − lim
t→∞[logψ(t)/t ] = �0 = R(t →∞). (17)

The long time limit in equation (17) reflects the existence of a limit theorem governing the rate
of physical events giving rise to relaxation. Specifically, ifN(t) is a random variable which
counts these random (and presumably independent) events, then ‘strong mixing’ implies the
ergodic theorem,

R(t →∞) = lim
t→∞〈N(t)〉/t (18)

whereR(t →∞) is positive finite constant characterizing the rate of mixing of the dynamical
system (i.e., material).
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(c)

Figure 2. (Continued)

If the relaxation process occurs more sporadically we have the ‘weak ergodic theorem’,

lim
t→∞〈N(t)〉/t

φ = �0/0(φ) (19)

where�0 is a positive constant andφ lies in the range 0< φ < 1. This gives rise to the
limiting behaviour,

lim
t→0+

ψ(t) = 1 − lim
t→∞[logψ(t)/t ] = 0 (20)

characteristic of the ‘weak mixing’ relaxation functions. Finally, we note that ifN(t) decays
fast (e.g., exponentially fast) for larget so that the integral ofR(t) over(0,∞) is finite, then
ψ(t) no longer decays to zero at long times. This ‘non-ergodic’ limiting behaviour corresponds
to a material that is not in equilibrium, a commonly observed behaviour in ‘glassy’ materials.

Weak mixing type relaxation leads to non-trivial constitutive equations and forms of matter
intermediate between the conventional defined solids and liquids. The Mittag–Leffler function
approaches a power law (von Schweidler relaxation) for long times,

ψ(t;φ) ∼ (t/τ0)
−φ t →∞. (21)

Next, if we insert this approximation for the shear relaxation function into the functional relating
stressσ(t) in strain rate ˙γ (t) in the limit of linear response, then we obtain thefractional order
constitutive equation relating these quantities,

σ(t) ∝ I 1−φ
t γ . (22)

Equation (22) reduces to the Newtonian constitutive relation for liquids and to a Hookean
solid for φ equal to 1 and 0, respectively. Equation (22) has been shown to provide a good
approximation of polymer gels and a variety of real (commercial) materials [16].
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A shortcoming of our probabilistic approach to modelling condensed matter relaxation
is that it does not account for transientspatial heterogeneities that develop through
interparticle interaction. It is now recognized that cooled liquids develop large scale dynamic
heterogeneities [18] and dynamic light scattering studies have also provided evidence for
spatial heterogeneity in entangled polymer solutions [19]. Douglas and Hubbard [3] suggested
that this clustering phenomenon, having its origin in topological interchain interactions, is
responsible for the universal ‘entanglement’ phenomena observed in high molecular weight
and concentrated polymer solutions and for characteristic features of stress relaxation in
glass-forming liquids where the clustering arises from interparticle attractions. Douglas and
Hubbard [3] extended the probabilistic model of condensed matter relaxation by introducing
probabilistic arguments for the form of this clustering process, based on the assumption of
thermodynamic equilibrium (Boltzmann’s law assumed to govern the cluster size distribution).
According to this model the average energy of the transient clusters is extensive in their size
where the geometry of these structures can be string-, sheet- or clump-like depending on the
particulars of the interparticle interactions. String-like structures were suggested to form in
‘fragile’ glass forming liquids, sheets in ‘strong’ glasses, while clumps were suggested for
‘entangled’ polymer solutions.

The Douglas–Hubbard model indicated that spatial heterogeneity arising from particle
clustering at equilibrium should give rise to a stretched exponential stress relaxation [3],

ψ(t) ≈ exp[−�0t
1−β/(1− β)] t →∞. (23)

This form of relaxation arises from the averaging over cluster size distribution and in this
modelβ depends on the geometry of the spatial heterogeneity involved,

β(line) = 2/3 β(sheet) = 1/2 β(clump) = 2/5. (24)

The relaxation functionψ(t) corresponds to a memory kernel in equation (3) having the form

k(t, τ ) = �0τ
−βδ(t − τ) (25)

whereδ is a delta-function.
Rigorous calculations [17] of the survival probability of a random walk in a medium

with randomly placed absorbing obstructions exactly leads to relaxation functions of the
form equation (23) whered is the spatial dimension rather than the cluster dimension, as
in the present modelling. The calculations of Donsker and Varadhan [17] clearly indicate that
material disorder can lead to stretched exponential relaxation and the cluster model of Douglas
and Hubbard [3] is patterned about this same conceptual idea. Notably, the inhomogeneities
in the stress-relaxation model are assumed to persist to timescales greater than the relaxation
process, but still finite so the fluid can remain in equilibrium.

An interesting implication of stretched exponential relaxation is the breaking of the time-
translation symmetry of the memory kernel in equation (3) (see equation (15)). This analytical
symmetry is linked to conservation of energy in the derivation of equation (3). Of course, this
is only an apparent symmetry breaking that derives from the disorder average [3]. There is
no paradox if we consider our material to be composed of anensembleof dynamical systems
comprised of different local environments on the timescale of the relaxation process under
discussion (this is nothing but the classical ‘distribution of relaxation times’ idea). The wide
occurrence of stretched exponential relaxation in condensed materials suggests that material
heterogeneity arising from long-lived particle clustering is a rather widespread phenomenon
in condensed materials.

It is natural to consider relaxation in condensed materials to involveboth intermittency
in the rate of the relaxation process (arising from collective particle motions in dense
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environments) and material heterogeneity. These effects are modelled by the more general
relaxation kernel which generalizes equations (9) and (25),

R(t, τ ) = �0|t − τ |φ−1τ−β/0(φ) 0< φ, β 6 1. (26)

InsertingR(t, τ ) into the relaxation integral equation (3) yields,

ψ(t;φ, β) = 1−�0

∫ t

0
dτ [|t − τ |φ−1τ−β/0(φ)]ψ(τ ;φ, β). (27)

This integral equation involves the replacement of theRiemann–Liouvilleoperator of
equation (10) by the more generalErdélyi–Koberfractional order operator [10],

I
δ,φ
t f (t) = t−(φ+δ)

∫ t

0
dτ [|t − τ |φ−1τ δ/0(φ)]f (τ). (28)

Exact solution of the integral equation by fractional calculus methods gives [3]

ψ(t;φ, β) =
∞∑
k=0

ak(φ, β)[z�(φ, β)]
k (29a)

a0(φ, β) = 1 ak(φ, β) =
k∏

m=1

0(1 +mφ̂ − φ)/0(1 +mφ̂) (29b)

φ̂ = φ − β 0< φ̂, φ, β 6 1 (29c)

z�(φ, β) = �0t
φ̂ = (t/τ ∗)φ̂ τ ∗(φ, β) = �−1/φ̂

0 . (29d)

ψ(t;φ, β) reduces to a Mittag–Leffler function forβ = 0 and a stretched exponential function
for φ = 1, but otherwiseψ(t;φ, β) becomes a hybrid form of these functions. Some
representative plots of these relaxation curves are given in figure 2.ψ(t;φ, β) arises in an
electrochemistry context in the description of the dropping mercury electrode [20] and in this
context the functionψ(t, φ, β) for φ̂ = 3/14 is known as the Koutecky function [3, 10, 20].

The Havriliak–Negami function [21] is widely used to correlate frequency domain
relaxation data for condensed materials. This function depends on two parameters that are
similar toφ andβ of ψ(t;φ, β). Indeed, the two classes of functions should provide rather
close approximations to each other. It would be interesting to test this new class of relaxation
functions against accurate measurements (stress relaxation and dielectric data) to determine
the system dependence ofφ andβ parameters.

Although the limiting stretched exponential (φ = 1; 0 < β < 1) relaxation functions
obey the conditions of ‘weak mixing’ given in equation (20), the integral ofψ(t;φ = 1, β)
from 0 to∞ is finite for this class of functions,∫ ∞

0
dτ ψ(τ ;φ = 1, β) <∞ (30)

making this class of functions suitable for modelling liquid relaxation (i.e., viscosity is finite
if ψ(t) is a shear relaxation function).

The slow decay of theψ(t;φ, β) for φ 6= 1 andβ 6= 0 requires a refinement of the
relaxation function classification introduced above. We observe that the integral ofψ(t;φ;β)
over [0,∞) diverges,∫ ∞

0
dτ ψ(τ ;φ, β = 0) dτ →∞ 0< φ < 1 (31)

while the integral ofψ(t, φ = 1, β) over [0,∞) is finite,

0<
∫ ∞

0
dτ ψ(τ ;φ = 1, β) <∞ 0< β < 1 (32)
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Thus, we further divide the ‘weak mixing’ class of relaxation functions into ‘homogeneous
weak mixing’ and ‘inhomogeneous weak mixing’ subclasses, according to whether the integral
of ψ(t;φ, β) over [0,∞) is finite or not. This provides a useful classification scheme for
condensed matter relaxation functions.

The complexity in the configurational dynamics of polymer materials and supercooled
liquids is reflected in the intermittency in particle motion and in the tendency for the particles
to cluster and move in a collective fashion. The integral equation model of relaxation in
conjunction with renewal theory provides a basis for understanding regularities in (long
wavelength) relaxation processes in condensed materials. Basic properties of condensed
matter relaxation (time–temperature superposition, monotonic decay of relaxation functions
etc) become apparent from a consideration of the types of ‘mixing’ which should occur for
statistical mechanical systems at equilibrium and from simple modelling of particle clustering
based on Boltzmann’s law. A general class of relaxation functions depending on temporal and
spatial heterogeneity indices(φ, β) is determined and a classification scheme for relaxation
functions is introduced as a byproduct of this investigation. It would be interesting to test
this new class of relaxation functions against accurate dielectric data to determine the system
dependence ofφ andβ parameters.

Acknowledgments

Fern Hunt and Marjorie McClain of the Computational and Applied Mathematics Laboratory
at NIST are thanked for their help in making the figures and Fern Hunt is also thanked for
many useful discussions.

References

[1] Jonscher A K 1975Nature253717
[2] Ngai K L, Jonscher A K and White C T 1979Nature277185
[3] Douglas J F and Hubbard J B 1991Macromolecules243163

Douglas J F 1995Comput. Mater. Sci.4 292
[4] McQuarrie D A 1976Statistical Mechanics(New York: Harper and Row) pp 572–9
[5] Feller W 1949Trans. Am. Math. Soc.6798

Feller W 1941Ann. Math. Stat.12243
[6] Cole K S and Cole R H 1941J. Chem. Phys.9 341

Cole K S and Cole R H 1942J. Chem. Phys.1098
[7] Berne B J, Boon J P and Rice S A 1966J. Chem. Phys.451086
[8] Zwanzig R 1961Lect. Theor. Phys.3 106
[9] Uhlenbeck G 1957Probability and Related Topics in Physical Sciencesed M Kac (New York: Interscience)

p 187
[10] Ross B 1975Fractional Calculus and Its Applications (Lecture Notes in Mathematics 457)(New York: Springer)

Oldham B and Spanier J 1974The Fractional Calculus(New York: Academic)
Hille E 1948Functional Analysis and Semi-Groups(New York: American Mathematical Society Colloquium

Publications)
Douglas J F 1989Macromolecules221786
Douglas J F, Wang S Q and Freed K F 1986Macromolecules192207

[11] Fujawara S and Yonezawa F 1995Phys. Rev.E 512277
Fujawara S and Yonezawa F 1995Phys. Rev. Lett.744229
Gomi S and Yonezawa F 1995Phys. Rev. Lett.744125

[12] Douglas J F and Ishinabe I 1995Phys. Rev.E 511791
[13] Blumen A, Klafter J and Zumofen G 1986J. Phys. A: Math. Gen.19L77
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